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Abstract. The cooperative games with fuzzy coalitions in which some players act in a
coalition only with a fraction of their total “power” (endeavor, investments, material, etc.)
or in which they can distribute their “power” in more coalitions, are connected with some
formal or interpretational problems. Some of these problems can be avoided if we interpret
each fuzzy coalition as a fuzzy class of crisp coalitions, as shown in [9, 10, 11]. In this
paper, the relation between this model of fuzziness and the original one (in which a fuzzy
coalition is a fuzzy set of players) is elucidated, and properties of the model are analyzed
and briefly interpreted. The analysis is focused on the concept of disjointness of fuzzy
coalitions and its role in the study of superadditivity of games with fuzzy coalitions. In
particular, three variants of disjointness are introduced and their consistency is discussed.
The derived results may be used for further development of the theory of games with fuzzy
coalitions characterized by fuzzy sets of crisp coalitions. They show that the procedure
developed in [11] appears to be the most adequate.

1 Introduction

In this paper, we deal with fuzzification of coalitional games with transferable utility,
briefly TU-games. Generally, TU-games can be fuzzified in several ways depending upon
which of the data specifying the game are uncertain. Here we are concerned with modeling
the situations in which coalitions may be fuzzy whereas the total payoff to each coalition
remains to be known precisely. Such models, which allow players to participate in several
coalitions have been studied since the seventies of the last century, see [1, 2] and [6]. For
more recent studies, see, for example, [3, 4, 8, 9].

The following sections are motivated by some specific uncertainties connected with
the interpretation of that model and with its “translation” into the reality of cooperative
behavior. Namely, if each (fuzzy) coalition is considered to be a fuzzy subset of the set of
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all players, with membership function defined for all players (even if sometimes vanishing)
then the real structure of cooperation in coalitions including the partition of the set of
players into some “groups dealing the same interests” can become rather hidden and the
conflict of motivations can be unclear. Some very brief comments on this were mentioned
in [8] and partly in [9], too, and in [11] one of its possible versions is suggested, as well.
From the formal point of view, there may appear some doubts about the sense of the
concept of disjointness of coalitions and, consequently, the concepts of superadditivity,
additivity, coalitional structure, and related notions.

An attempt to handle these difficulties can be based on a modification of the formalism
describing the concept of fuzzy coalition. The “traditional” fuzzy coalitions defined as
fuzzy sets of players can easily be transformed into fuzzy classes of crisp coalitions. This
transformation preserves the main advantages of the fuzzy sets of players and, moreover,
it offers even more refined diversification of the cooperative bounds objectively existing
in the game. Moreover, it offers a possibility to use the well-known properties of crisp
coalitions (and deterministic TU-games) even for the applications in which the structure
of cooperation is rather vague. In the main parts of the paper, we study three potentially
possible versions of such model. More exactly, the eventual models of the considered game
may be treated as certain mixtures of the two models of fuzzy coalitions – their repre-
sentations by fuzzy sets of players or by fuzzy sets of crisp sub-coalitions. Their analysis
is focused on the mutual compatibility of these two approaches and on their proportions
in one eventual model. The main results regard very elementary (and, consequently, fun-
damental) concepts of the cooperation theory, namely the disjointness of coalitions and
the superadditivity. The following text represents a rather discussion paper contributing
to the methodological analysis of the adequacy of particular approaches to the reality of
cooperative behaviour as well as to the formal operability of the model.

2 Coalitional Games with Transferable Utility

By a coalitional game with transferable utility we mean an ordered pair G = (I, v) where
I is a nonempty finite set and v is a real valued function defined on the set of all subsets
of I such that, for the empty set ∅, v(∅) = 0. The members of I are called players, the
subsets of I are called coalitions, and the function v is called the characteristic function
of G. The value v(K) of the characteristic function at a coalition K is interpreted as the
total payoff that is available to coalition K for division among the members of K.

For every coalition K, each vector xK = (xi)i∈K ∈ RK such that∑
i∈K

xi ≤ v(K)(1)

represents an achievable distribution of the total payoff of coalition K among the members
of K.

The game is called superadditive iff, for each pair of disjoint coalitions K and K ′,

v(K ∪K ′) ≥ v(K) + v(K ′).(2)

For a detailed treatment, see, for example, [5, 13, 14].
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3 Fuzzy Coalitions – Classical Model

As already explained in the Introduction, in many cases, it is not realistic to assume that
each player participates in exactly one coalition which consumes all his potential “power”.
In fact, we often part our endeavor into cooperative activities within the frame of several
groups sharing common interest in a social or economic process. One of these “groups”
may be even the one-player coalition. This distribution of player’s endeavor is modelled
by the tools of fuzzy set theory – each coalition is considered to be a fuzzy subset of the
set I.

In the following sections, for every set X, we denote by P(X) the set of all subsets of
X and by F(X) the class of all fuzzy subsets of X. To differentiate between subsets of
X and fuzzy subsets of X, we sometimes say ”crisp subsets” of X instead of ”subsets” of
X. Thus crisp coalitions are elements of P(I).

Every fuzzy coalition L ∈ F(I) is characterized by its membership function τL : I →
[0, 1] with the usual interpretation (cf. [1, 2, 3, 10, 9]). Since the participation level τL(i)
is a number from the unit interval [0, 1], we can identify F(I) with the unit hypercube
Hn = [0, 1]n where n denotes the number of players in the game. Consequently, the
vertices of Hn represent crisp coalitions. In other words, a crisp coalition K can be
identified with a fuzzy coalition whose membership function has value 1 for i ∈ K and 0
otherwise. To simplify the orientation in the following text, we denote the crisp coalitions
by K (possibly with indices), and the fuzzy coalitions by letters L, J, M (possibly with
indices). For the crisp coalition of all players, we also use the letter I.

Without loss of generality, we suppose that I = {1, 2, . . . , n}, where n denotes the
number of players in the game. In addition we set N = 2n−1 and label the crisp coalitions
as follows: K0, K1, K2, . . . , KN where K0 = ∅. From many of possible labellings, we fix
one of them throughout the paper.

The characteristic function of a TU-game with fuzzy coalitions is defined (see [1]) as a
function v : F(I) → R such that v(K0) = 0. Its properties are investigated in numerous
works; see, for example, [1, 2, 3, 4].

The extension of some basic concepts of the deterministic TU-games model to TU-
games with fuzzy coalitions is quite inspirative. Nevertheless, there are some open topics
which deserve attention. The roots of some of them can be found in a concealed but
natural intuitive expectation that any TU-game with fuzzy coalitions could be interpreted
as an extension of some crisp coalitional TU-game. This approach was used in [10] and
[9]. In the same spirit, in the following sections, we discuss one of the basic concepts;
namely, the disjointness of fuzzy coalitions and its immediate consequences. On this basic
level, some potentially admissible approaches to the fuzzy coalitions are illustrated.

4 Fuzzy Coalitions – Extension of Crisp Cooperation

Let b = (b0, b1, . . . , bN) be an ordered (N + 1)-tuple of nonnegative numbers such that
b0 + b1 + · · ·+ bN = 1. The set of all such vectors is an N -dimensional simplex in (N +1)-
dimensional space, and it is denoted by ∆N . Note that ∆N is a proper subset of the
hypercube HN+1.
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Using the notation introduced in the previous section and representing the crisp coali-
tions K0, K1, . . . , KN by the {0, 1}-membership functions τ0, τ1, . . . , τN , respectively, we
associate with every b ∈ ∆N the fuzzy subset L(b) of I whose membership function τL(b)

is defined by

τL(b)(i) = b0τ0(i) + b1τ1(i) · · ·+ bNτN(i).(3)

It has been shown in [8] and [9] that, for every fuzzy coalition L ∈ F(I), there is at
least one b ∈ ∆N with the property L = L(b), and that, for a given fixed L, there usually
exist many b′s for which L(b) is equal to L.

This fact offers an interesting interpretation. Namely, for each fuzzy coalition L, its
membership function τL does not contain the complete information about the structure of
cooperation of a player i with other members of L. It specifies only, that player i“invests”
the part τL(i) of his total endeavor in the interests of coalition L. The possibility of
representing L by L(b) where b has several positive components shows that L itself is a
structure of several cooperating crisp groups of players where, usually, each cooperating
group participates in the common goals of L with only some part of its “power”. The fact
that there may exist many b’s for which L(b) is equal to the same L indicates that any
resulting choice of b conveys a piece of new information about the existing structure of
relations inside L. It appears to be useful to represent the fuzzy cooperation in TU-games
not only by fuzzy coalitions but also by involving this additional information.

Before doing so, we describe some relations between the values of characteristic func-
tions for crisp and fuzzy coalitions. Since the equality L = L(b) can be valid for several
different elements b from ∆N , it is natural to extend the characteristic function v of a
coalitional game from crisp to fuzzy coalitions by defining the value v̄(L) for each fuzzy
coalition L as follows: For each b = (b0, b1, . . . , bN) from ∆N , let vb denote the value of
the sum

b0v(K0) + b1v(K1) + · · ·+ bNv(KN).

Then we define v̄(L) by

v̄(L) = max(vb : b ∈ ∆N , L(b) = L).(4)

It is easy to verify that v̄ is an extension of v, that is, v̄(L) = v(L) for each crisp
coalition L.

Since the components of each b from ∆N are numbers from the unit interval [0, 1],
they can be interpreted as values of membership functions. In other words, each b from
∆N determines uniquely not only a fuzzy subset L(b) of I but also a fuzzy subset L(b) of
P(I). The former is defined by (3), the latter by

βL(b)(Kj) = bj for j = 0, 1, . . . , N.(5)

We say that a fuzzy subset L of P(I) reflects cooperation in L from F(I) if there exists
b ∈ ∆N such that both L = L(b) and L = L(b).

Lemma 1. For every fuzzy coalition L from F(I), there exists at least one L ∈ F(P(I))
reflecting cooperation in L.
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Lemma 2. A fuzzy subset L of P(I) reflects cooperation in some fuzzy coalition from
F(I) iff ∑

K∈P(I)
βL(K) = 1.

The following example illustrates the already mentioned fact that there may exist
many fuzzy subsets of P(I) reflecting cooperation in a fuzzy coalition from F(I).

Example 1. Let I = {1, 2, 3, 4} and let L be the fuzzy coalition such that τL(i) = 1/2
for all i ∈ I. Then the following subsets (and many others) of P (I) reflect cooperation in
L.

βL : βL({1, 2}) = 1/2, βL({3, 4}) = 1/2, βL(K) = 0 otherwise,
β′L : β′L({1, 3}) = 1/2, β′L({2, 4}) = 1/2, β′L(K) = 0 otherwise,
β′′L : β′′L(I) = 1/2, β′′L({K0}) = 1/2, β′′L(K) = 0 otherwise,
β∗L : β∗L({1, 2, 3}) = 1/2, β∗L({4}) = 1/2, β∗L(K) = 0 otherwise.

As already mentioned, the classical concept of a fuzzy coalition is based only on infor-
mation about the level of participation of each player. On the other hand, the paradigm
that the fuzziness of a coalition means that it itself is a combination of homogeneous
groups more or less contributing to L opens the possibility to analyze the relations of
players to other partners in the coalition in a more sophisticated way.

For every player i ∈ I and every fuzzy coalition L ∈ F(I) for which a fuzzy set
L ∈ F(P(I)) reflects cooperation in L, we define the mapping (i)βL : P(I) → [0, 1], which
we call a structure of contacts of i in characterization βL, as follows:

(i)βL(K) = βL(K) if i ∈ K,

= 0 if i /∈ K.
(6)

Lemma 3. For each L ∈ F(P(I)) that reflects cooperation in a coalition L ∈ F(I), and
each player i ∈ I, ∑

K∈P(I)

(i)βL(K) = τL(i).

P r o o f . The equality follows directly from (3), (5) and (6).

This Lemma illustrates the fact that the conceptions of a fuzzy coalition as a fuzzy
subset of I and as a fuzzy subset of P(I) are somewhat related. However, this relation
is not very tight – there is no one-to-one correspondence between both types of fuzzy
coalitions. Among other consequences, it means that the method of extension of the
characteristic function v used in Section 3 cannot be simply transmitted to F(P(I)).
Nevertheless, it is possible to define other extensions (one of them is suggested in [11])
and the assumption that function v oculd be extended from P(I) to F(P(I)) is fully
justified.
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5 Fuzzy Coalitions – Disjointness

In this section we use the concepts of disjointness to illustrate differences between the
approaches to the fuzziness of coalitions discussed in the previous sections and their
consequences for the concept of superadditivity.

5.1 Fuzzy subsets of I

First let us recall that the disjointness of crisp coalitions K and K ′ can be expressed in
terms of membership functions by the requirement

min(τK(i), τK′(i)) = 0 for i = 1, 2, . . . , n.

Then it seems natural to say that the fuzzy coalitions L and M from F(I) are disjoint iff

min(τL(i), τM(i)) = 0 for i = 1, 2, . . . , n.

In this strict view, the disjointness of fuzzy coalitions is a binary relation on F(I), that is,
a crisp subset of the Cartesian product F(I) × F(I). We will call it ”crisp disjointness”
of fuzzy coalitions.

This view appears to be too rigid when the level of participation of players is negligibly
low. To relax this rigidity, we consider the concept of disjointness of fuzzy coalitions as a
fuzzy subset of F(I)×F(I). We denote its membership function by δ and define it by

δ(L, M) = 1−max
i∈I

(min(τL(i), τM(i))) .(7)

Remark 3. In view of Lemma 3, it can easily be seen that

δ(L, M) = 1−max
i∈I

(
min

(∑
K∈P(I)

(i)βL(K),
∑

K∈P(I)

(i)βM(K)
))

,

where L with βL and M with βM are any fuzzy sets from F(P(I)) that reflect the coop-
eration in L and M , respectively. Lemma 3 also implies that this equality is independent
of the choice of L and M among those which reflect cooperation in L and M .

Lemma 4. If L with βL and M with βM reflect the cooperation in L, M ∈ F(I),
respectively, and if for some K ∈ P(I), βL(K) > 0 and βM(K) > 0 then, evidently,
δ(L, M) < 1.

P r o o f . The statement follows directly from Remark 3.

Theorem 1. Fuzzy coalitions L and M from F(I) are crisply disjoint if and only if
δ(L, M) = 1.

P r o o f . If L and M from F(I) are crisply disjoint, then min(τL(i), τM(i)) = 0 for each
i ∈ I. Therefore the maximum of these minima is also equal to zero, which implies
δ(L, M) = 1. On the oter hand, if L and M from F(I) are not crisply disjoint, then
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necessarily min(τL(i), τM(i)) > 0 for some i ∈ I. Consequently, maxi∈I (min(τL(i), τM(i)))
is positive, and therefore δ(L, M) < 1.

As a direct corollary of this theorem, we obtain that if the coalitions L, M are crisp,
then δ(L, M) = 1 if L ∩M = ∅, and δ(L, M) = 0 if L ∩M 6= ∅.

Now, it is natural to define the superadditivity as a fuzzy property defined on the
class of all TU-games (I, v) over the set of players I. We define its membership function
(denoted by σI) as follows:

σI(v) = 1−max
(
δ(L, M) : L, M ∈ F(I), v̄(L ∪M) < v̄(L) + v̄(M)

)
,(8)

where v̄ is the characteristic function defined by (4) and where the union L ∪M is the
fuzzy coalition whose membership function is

τL∪M(i) = max (τL(i), τM(i)) .(9)

It can easily be verified that the definition of σI together with Lemma 4 implies the
validity of the following lemma.

Lemma 5. For the games in which only crisp coalitions are admissible, the superad-
ditivity introduced above reduces to the classical superadditivity specified in Section 2,
formula (2).

5.2 Fuzzy subsets of P(I) – respecting also I

The above approach to the superadditivity respects the classical model of fuzzy coalitions
as fuzzy subsets of I. If we wish to amend the weakness of links between the crisp and fuzzy
coalitions connected with this model, we have to consider the paradigm in which fuzzy
coalitions are, rather than some independent objects, extensions of the crisp coalitions,
and to involve a more complex structure of cooperative relations. We have already done
something similar in the previous section by introducing the concepts of reflection of
cooperation, structure of contacts, and, especially, in formula (4) where a close relation
between crisp and fuzzy coalitions is manifested.

If we accept the principle that a fuzzy coalition is not to be described as a fuzzy subset
of I but as a fuzzy class of crisp coalitions, then its impact on the concept of disjointness
(and other concepts involving it) is quite significant.

If the cooperation in a fuzzy coalition L is identified with those L that reflect cooper-
ation in L, then also the disjointness may be understood as a relation between the crisp
coalitions with positive values of the membership function βL. The disjointness remains
to be a fuzzy relation between fuzzy coalitions from F(I). We denote its membership
function by δ : F(I)×F(I) → [0, 1] but now it is defined by

δ(L, M) = 1−max
i∈I

(
max

K,K′∈P(I)

(
min

(
(i)βL(K), (i)βM(K ′)

)))
, L, M ∈ F(I),(10)

where L with βL and M with βM reflect the cooperation in L and M , respectively, and
(i)βL, (i)βM are defined by (6).
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Let us note that this formulation represents a hybrid approach to the phenomenon of
disjointness in the sense that it is formally based on the fuzzy subsets of P(I) but, as a
consequence of the application of the structures of contacts (i)βL, it does not contradict
the traditional interpretation of coalitions as fuzzy or crisp subsets of I.

Theorem 2. If L, M are crisp then δ(L, M) = 1 iff L ∩ M = ∅ and δ(L, M) = 0 iff
L ∩M 6= ∅.

P r o o f . The statement follows from (10). If L and M are crisp, that is, L, M ∈ P(I),
then βL(L) = 1, βL(K) = 0 for K 6= L, and βM(M) = 1, βM(K) = 0 for K 6= M.
Moreover, for all i ∈ L, (i)βL(L) = 1 and for all i ∈ M , (i)βM(M) = 1, and the values
of (i)βL(·) and (i)βM(·) vanish in other cases. It follows that, for disjoint L, M , always at
least one of the values (i)βL(K), (i)βM(K) for any K ∈ P(I) and any i ∈ I is equal to
0 and, consequently, δ(L, M) = 1. On the other hand, if there exists i ∈ L ∩ M then
(i)βL(K) = (i)βM(K) = 1 for K = L and K ′ = M and, consequently, δ(L, M) = 0.

Now it is easy to modify formula (8) by means of modifying the condition of disjointness
and to define the fuzzy superadditivity as a fuzzy property of the TU-games over the set
of players I. We denote its membership function σI , and define it for a game (I, v) by

σI(v) = 1−max (δ(L, M) : L, M ∈ F(I), v̄(L ∪M) < v̄(L) + v̄(M)) .(11)

where again v̄ is the characteristic function defined by (4).

Remark 4. If L, M ∈ F(I) in (11) and L, M ∈ F(P(I)) reflecting their cooperation
are such that min(βL(K), βM(K)) = 0 for all K ∈ P(I) then it is possible (and, perhaps,
natural) to use special expression

βL∪M(K) = max (βL(K), βM(K))/ 2, K ∈ P(I).

In accordance with (4), then

v̄(L ∪M) ≥
∑

K∈P(I)
βL∪M(K) · v(K).

Remark 5. Analogously to the previous case, it is easy to verify that for a TU-game
with only crisp coalitions the previous definition of fuzzy superadditivity corresponds with
the classical deterministic one (cf. Lemma 5 and (2)).

5.3 Exclusively fuzzy subsets of P(I)

The last approach to the disjointness (and, consequently, superadditivity) of fuzzy coali-
tions follows consequently from their representation by fuzzy subsets of the set P(I).
It means that their fuzzy disjointness keeps being a fuzzy relation, i. e., fuzzy subset of
F(P(I))×F(P(I)), with membership function δ∗ : F(P(I))×F(P(I)) → [0, 1], defined
by

δ∗(L,M) = 1− max
K∈P(I)

[min (βL(K), βM(K))](12)
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for L, M∈ F(P(I)).

This definition of fuzzy disjointness essentially differs from the classical and intuitively
accepted one. Let us note, for illustration, that fuzzy coalition of 4 players described in
Example 1 as fuzzy subset of I, has several different representations by fuzzy subsets of
P(I). Many of them are completely disjoint in the sense of (12) i. e. δ∗(·, ·) = 1, even if
they represent the same fuzzy coalition in the sense of Section 3, i. e., the values of δ(·, ·)
and δ(·, ·) are equal to 0.

For this consequent acceptation of fuzzy coalitions from F(P(I)), also their union and
intersection gains completely different sense. Namely, for L, M ∈ F(P(I)), L ∪M and
L ∩M are from F(P(I)), too, and for any K ∈ P(I),

βL∪M(K) = max (βL(K), βM(K)) , βL∩M(K) = min (βL(K), βM(K)) .(13)

Except very special degenerated cases, the sums∑
K∈P(I)

βL∪M(K) and
∑

K∈P(I)
βL∩M(K)(14)

are not equal to 1. With respect to Lemma 2 it means that they have no counterparts
in the class F(I). Consequently, in this model, we have definitely left the environment of
fuzzy coalitions extending the class of subsets of I by its fuzzy subsets.

It is worth mentioning that if K, K ′ are different crisp coalitions, then the correspond-
ing fuzzy coalitions LK and LK′ defined by

βLK
(K) = 1, βLK

(K̄) = 0 for K̄ 6= K

βLK′ (K
′) = 1, βLK′ (K̄) = 0 for K̄ 6= K ′

are completely disjoint in the sense that δ∗(LK ,LK′) = 1.

While the disjointness is a property of the inter-coalitional relation, the superadditivity
is to respect also specific properties of the characteristic function v. Till now, we have
considered v as a mapping v : P(I) → R extended to v : F(I) → R by means of (4). In
this subsection, where we consider fuzzy subsets of P(I), i. e., fuzzy sets from F(P(I))
for the main representation of coalitional cooperation, it is desirable to extend v also on
the mapping v : F(P(I)) → R.

Let us stress the fact that the consistency of this extension with the original charac-
teristic function v : P(I) → R is desirable.

Let us consider a fuzzy set of crisp coalitions L ∈ F(P(I)) with membership function
βL : P(I) → [0, 1]. Then we define the value

v(L) = max {v(K) · βL(K) : K ∈ P(I)} .(15)

Remark 6. It is easy to see that if the fuzzy set L is formed by a single possible crisp
coalition K ∈ P(I), where βL(K) = 1, βL(K ′) = 0 for K ′ 6= K, K ′ ∈ P(I), then evidently
v(L) = v(K).

Let us note that (15) is not the single possibility of extension of v on the set F(P(I)).
The alternative approach, extending v into a fuzzy function, is considered in [12].
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Even in this model the definition of fuzzy superadditivity preserves the classical pat-
tern, and it is defined as a fuzzy property of TU-games with membership function σ∗I such
that for any (I, v) the value σ∗I (v) denoting the possibility that (I, v) is superadditive is
defined by

σ∗I (v) = 1−max (δ∗(L,M) : L, M∈ F(P(I)), v(L ∪M) < v(L) + v(M)) .(16)

In this formula, the consequent and formally pure definition of union by (13) enables to
define the value of v(L ∪M) (rather similarly to (4)) by the formula used in Remark 4.

The procedure described in this subsection has some evident discrepancies. Their roots
consist in the fact that this model of fuzzy coalition as a fuzzy subset of P(I) separates
that notion from the natural demand due to which even the fuzzy coalition is to be a
set of players, in some sense extending the crisp coalition model. It means that it is to
characterize the distribution of each player’s endeavor among the coalitions in which he
participates. This demand is not respected. For example, even if L, M ∈ F(P(I)) fulfil
the statement of Lemma 3 and for some i ∈ I∑

K∈P(I)

(i)βL(K) ≤ 1,
∑

K∈P(I)

(i)βM(K) ≤ 1

the union of both fuzzy coalitions need not respect that limitation, and then∑
K∈P(I)

(i)βL∪M(K) > 1,

in such case, player i ∈ I distributes more of his “energy” than he disposes with.

Nevertheless, the approach used in [11] follows from 5.3 with some modifications re-
flecting the individual motivation of particular players, and the monotonicity of the pay-off
function for the fuzzy coalitions.

6 Conclusion

The definition of fuzzy coalition as a fuzzy subset of the class of all crisp coalitions is, itself,
formally acceptable, and it can be closely connected with the fuzzy coalitions defined as
fuzzy sets of players. However, their further processing closely analogous to the processing
of the fuzzy coalitions from F(I) leads to some paradoxes, mostly following from the
attempts to manage the concepts of union and intersection of such fuzzy coalitions.

The acceptance of the alternative model of fuzzy coalition given here and in [11] does
not mean that its further development can follow without alternatives. We have tested
three of them on the very basic concept of superadditivity. It is obvious that all of
them are in certain limits possible but each of them is connected with formal problems
demanding other and more essential interventions in the model. The methodological
principles presented here in Subsection 5.3 were further developed in [11] and the results
are quite optimistic. They appear to be an adequate reflection of the realistic cooperation
with vague participation in coalitions.

Anyhow, the definition of the fuzzy coalitions as fuzzy subsets of the class P(I) appears
inspirative and perspective. It effectively extends the existing model and brings its new
interpretations, and it also offers a qualitatively new view at the structure of fuzziness
in cooperative behaviour. Hence, it appears to be an interesting topic of the further
development of the theory of TU-games with fuzzy coalitions.
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